Spatial Nonstationarity and Autoregressive Models
نویسندگان
چکیده
منابع مشابه
Estimation in Threshold Autoregressive Models with Nonstationarity
This paper proposes a class of new nonlinear threshold autoregressive models with both stationary and nonstationary regimes. Existing literature basically focuses on testing for a unit–root structure in a threshold autoregressive model. Under the null hypothesis, the model reduces to a simple random walk. Parameter estimation then becomes standard under the null hypothesis. How to estimate para...
متن کاملNonstationarity in regression-based spatial interpolation models
The existence of nonstationarity, or spatial variability in geographical relationships, is a topic that has received some attention in the geographical literature in recent years. Its effect in regression-based spatial interpolation methods, however, remains an open research question. In order to explore this question, the paper describes a general regression model which can be used to derive a...
متن کاملSpatial Autocorrelation and Autoregressive Models in Ecology
Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available software, to examine breeding habitat relationships for ...
متن کاملSpecification Test for Spatial Autoregressive Models
This paper considers a simple test for the correct specification of linear spatial autoregressive models, assuming that the choice of the weight matrix is true. We derive the limiting distributions of the test under the null hypothesis of correct specification and a sequence of local alternatives. We show that the test is free of nuisance parameters asymptotically under the null and prove th...
متن کاملA Selection Criterion for Spatial Autoregressive Models
Riassunto La scelta tra modelli autoregressivi spaziali richiede non solo l’individuazione delle coordinate non nulle di un modello “saturo”, ma anche la specificazione della struttura di vicinato tra le osservazioni. Si considera un criterio di scelta di tipo BIC, basato su una funzione di pseudo-verosimiglianza penalizzata. Il criterio è (debolmente) consistente sotto ipotesi assai generali. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environment and Planning A: Economy and Space
سال: 1998
ISSN: 0308-518X,1472-3409
DOI: 10.1068/a300957